
Presenting Proofs with Adapted Granularity⋆

Marvin Schiller1 and Christoph Benzmüller2

1 German Research Center for Artificial Intelligence (DFKI), Bremen, Germany
2 International University in Germany, Bruchsal, Germany

Marvin.Schiller@dfki.de, c.benzmueller@googlemail.com

Abstract. When mathematicians present proofs they usually adapt their
explanations to their didactic goals and to the (assumed) knowledge
of their addressees. Modern automated theorem provers, in contrast,
present proofs usually at a fixed level of detail (also called granularity).
Often these presentations are neither intended nor suitable for human
use. A challenge therefore is to develop user- and goal-adaptive proof
presentation techniques that obey common mathematical practice. We
present a flexible and adaptive approach to proof presentation based on
classification. Expert knowledge for the classification task can be hand-
authored or extracted from annotated proof examples via machine learn-
ing techniques. The obtained models are employed for the automated
generation of further proofs at an adapted level of granularity.

Key words: Adaptive proof presentation, proof tutoring, automated
reasoning, machine learning, granularity

1 Introduction

A key capability trained by students in mathematics and the formal sciences
is the ability to conduct rigorous arguments and proofs and to present them.
The presentation of proofs in this context is usually highly adaptive as didactic
goals and the (assumed) knowledge of the addressee are taken into consider-
ation. Modern theorem proving systems, in contrast, do often not sufficiently
address this common mathematical practice. In particular automated theorem
provers typically generate and present proofs only using very fine-grained and
machine-oriented calculi. Of course, some theorem proving systems exists —
amongst them prominent interactive theorem provers such as Isabelle/HOL3,
HOL4, Coq5, and Theorema6 — that provide means for human-oriented proof
presentations. Nevertheless the challenge of supporting user- and goal-adapted
proof presentations has been widely neglected in the past. This constitutes an
unfortunate gap, in particular since mathematics and the formal sciences are

⋆ This work was supported by a grant from Studienstiftung des Deutschen Volkes e.V.
3 http://www.cl.cam.ac.uk/research/hvg/Isabelle/
4 http://hol.sourceforge.net/
5 http://coq.inria.fr/
6 http://www.risc.uni-linz.ac.at/research/theorema/



1 Let x be an element of A∩ (B ∪C), 2 then x ∈ A and x ∈ B ∪C. 3 This means
that x ∈ A, and either x ∈ B or x ∈ C. 4 Hence we either have (i) x ∈ A and x ∈ B,
or we have (ii) x ∈ A and x ∈ C. 5 Therefore, either x ∈ A ∩ B or x ∈ A ∩ C, so
6 x ∈ (A∩B)∪(A∩C). 7 This shows that A∩(B∪C) is a subset of (A∩B)∪(A∩C).
8 Conversely, let y be an element of (A∩B)∪ (A∩C). 9 Then, either (iii) y ∈ A∩B,
or (iv) y ∈ A ∩ C. 10 It follows that y ∈ A, and either y ∈ B or y ∈ C. 11 Therefore,
y ∈ A and y ∈ B∪C 12 so that y ∈ A∩(B∪C). 13 Hence (A∩B)∪(A∩C) is a subset
of A ∩ (B ∪ C). 14 In view of Definition 1.1.1, we conclude that the sets A∩ (B∪C)
and (A∩B)∪(A∩C) are equal.

Fig. 1. Proof of the statement A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), reproduced from [1]

increasingly targeted as promising application areas for intelligent tutoring sys-
tems. We briefly illustrate the challenge with an example. In the elementary proof
in basic set theory in Fig. 1 in Bartle & Sherbert’s introductory textbook [1], in-
termediate proof steps are skipped when this seems appropriate: whereas most of
the proof steps consist of the application of exactly one mathematical fact (e.g.,
a definition or a lemma, such as the distributivity of and over or), the step from
assertion 9 to assertion 10 applies several inference steps at once, namely the
application of the definition of ∩ twice, and then using the distributivity of and

over or. Similar observations were made in the empirical studies within the Dia-
log project [2], where tutors (mathematicians hired to help simulate the dialog
system) identified limits for how many inference steps are to be allowed at once.

student: (x, y) ∈ (R ◦ S)−1

tutor: Now try to draw inferences from that!

student: (x, y) ∈ S−1 ◦ R−1

tutor: One cannot directly deduce that.

An example from our Dialog
corpus [3] for a correct but un-
acceptably large student step
that was rejected by the tutor
is presented to the right.

The challenge thus consists in (i) developing means to model and assess
different levels of proof granularity, (ii) providing support for the interactive or
even automated acquisition of such models from well chosen proof examples, and
(iii) combining these aspects with natural language (NL) generation techniques
to present machine generated proofs at adaptive levels of granularity to humans.

Related work has addressed this challenge only to a moderate extent. The
Ωmega system [4], for example, provides a hierarchically organized proof data
structure that allows to represent proofs at different levels of granularity which
are maintained simultaneously in the system. And Ωmega’s proof explanation
system P.rex [5] was able to generate adapted proof presentations by moving
up or down these layers on request. The problem remains, however, of how to
identify a particular level of granularity, how to model it, and how to ensure
that this level of granularity is appropriate. A similar observation applies to the
Edinburgh HiProofs system [6]. One particular level of proof granularity has
been proposed by Autexier and Fiedler [7], which, in brief, refers to assertion
level proofs where all assertion level inference steps are spelled out explicitly and
refer only to facts readily available from the assertions or the previous inference



steps (what-you-need-is-what-you-stated granularity). However, they conclude
that even the simple proof in Fig. 1 cannot be fully captured by their rigid
notion of proof granularity.

In this paper we present a flexible and adaptive framework to proof pre-
sentation (currently used for formal proofs, not diagrammatic proofs etc.). Our
approach employs rule sets (granularity classifiers) to model different levels of
proof granularity. These rule sets are employed in a straightforward proof assess-
ment algorithm to convert machine generated proofs (in our Ωmega system) into
proofs at specific levels of detail. Both the granularity rules and the algorithm
are outlined in Sect. 2. In Sect. 3 we show that our approach can successfully
model the granularity of our running example proof in Fig. 1. Different models
for granularity can either be hand-coded or they may be learned from samples us-
ing machine learning techniques. Ideally, the latter approach, which is described
in Sect. 4, helps reducing the effort of adapting the system to new application
and user contexts, and, in particular, to train the system by domain experts who
are not familiar with expert systems.

2 An Adaptive Model for Granularity

We treat the granularity problem as a classification task: given a proof step, rep-
resenting one or several assertion applications7, we judge it as either appropriate,
too big or too small. As our feature space we employ several mathematical and
logical aspects of proof steps, but also aspects of cognitive nature. For example,
we keep track of the background knowledge of the user in a basic (overlay) stu-
dent model. We illustrate our approach with a proof step from Fig. 1: 10 is
derived from 9 by applying the definition of ∩ twice, and then using the dis-
tributivity of and over or. In this step (which corresponds to multiple assertion
level inference steps) we make the following observations:

(i) involved are two concepts: def. of ∩ and distributivity of and over or,
(ii) the total number of assertion applications is three,
(iii) all involved concepts have been previously applied in the proof,
(iv) all manipulations apply to a common part in 9 ,
(v) the names of the applied concepts are not explicitly mentioned, and
(vi) two of the assertion applications belong to naive set theory (def. of ∩) and

one of them relates to the domain of propositional logic (distributivity).

These observations are represented as a feature vector, where, in our example,
the feature “distinct concepts” receives a value of “2”, and so forth. Currently,
our system computes the following set of features for each (single- or multi-
inference) proof step:

total : the total number of (assertion level) inference steps combined into one
proof step,

7 We use the notion of assertion application for inference steps that are justified by a
mathematical fact (such as a definition, theorem or a lemma).



conceptsunique: the number of different concepts applied within the proof step,
mastered-concepts-unique (m.c.u.): the number of different employed mathe-

matical facts assumed to be known to the user according to the very basic
user model (which is updated in the course of the proof8),

unmastered-concepts-unique (unm.c.u.): the number of different employed math-
ematical facts assumed to be unknown to the user,

verb: whether the step is accompanied by a verbal explanation,
unverbalized-unknown: the number of assertions not accompanied by a verbal

description and not known to the user,
lemmas : the number of employed assertions that are lemmas (in contrast to

basic definitions),
hypintro: indicates whether a (multi-inference) proof step introduces a new

hypothesis,
subgoals : indicates whether (and how many) new subgoals have been intro-

duced,
same-subformula: indicates whether all manipulations apply to a common for-

mula part,
newinst : indicates whether a variable has been instantiated,
close: indicates whether a branch of the proof has been finished,
parallelism: indicates when it is possible to apply the same assertion several

times, but it is applied only on fewer occasions than possible,
forward : indicates inference applications in forward direction,
backward : indicates inference applications in backward direction,
direction-change: indicates whether the direction of inferences has changed

w.r.t. the previous step,
step-analog: indicates whether the assertions applied within the current step

have been applied before in the proof, in the same order and as a single step,
multi-step-analog: indicates whether the assertions applied within the current

step have been applied before in the proof, in the same order, but not nec-
essarily within a single step,

settheory, relations, topology, geometry, etc. the number of inference applica-
tions from each (mathematical) domain,

∩-Defn, ∪-Defn, eq-Defn, etc. indicator feature for each concept.

These features were motivated by the corpora obtained from the experiments
in the Dialog project (cf. [2] and [3]) and discussions with domain experts.
We express our models for classifying granularity as rule sets (cf. Fig. 4), which
associate specific combinations of feature values to a corresponding granularity
verdict (“appropriate”, “too big” or “too small”). Our straightforward algorithm
for granularity-adapted proof presentation takes two arguments, a granularity
rule set and an assertion level proof 9 as generated by Ωmega. The assertion

8 All concepts that were employed in an “appropriate” or “too small” proof step obtain
the status of being known in the subsequent proof steps/proofs.

9 In principle, our approach is not restricted to assertion level proofs and is also
applicable to other proof calculi. However, in mathematics education we consider
single assertion level proof steps as the finest granularity level of interest. We gained
evidence for this choice from the empirical investigations in the Dialog project
(cf. [2] and [3]).



Def eq (1)

Def⊆ (2)

Def∩ (3)

Def∪ (4)

DISTR (5)

Def∩ (6)

Def∩ (7)

Def∪ (8)
x ∈S ⊢ x ∈S

(x∈(A∩B)∨x∈(A∩C)) ⊢ x∈S

(x∈(A∩B)∨x∈A∧x∈C)⊢ x∈S

(x∈A∧x∈B∨x∈A∧x∈C)⊢x∈S

(x∈A∧(x∈B ∨ x∈C)) ⊢ x∈S

(x∈ A∧ x∈(B∪C)) ⊢ x∈S

(x∈(A ∩ (B∪C))) ⊢ x∈S

⊢ (A∩ (B∪C))⊆S

y∈T ⊢ y∈T

(y∈A ∧ y∈(B∪C)) ⊢ y∈T
Def∩ (15)

(y∈A∧(y∈B∨y∈C))⊢y∈T
Def∪ (14)

(y∈A∧y∈B∨y∈A∧y∈C)⊢y∈T
DISTR(13)

(y∈A∧y∈B∨y∈(A∩C)) ⊢ y∈T
Def∩ (12)

(y∈(A∩B) ∨ y ∈ (A∩C)) ⊢ y∈T
Def∩ (11)

(y∈((A∩B)∪(A∩C))) ⊢ y∈T
Def∪ (10)

⊢ ((A∩B)∪(A∩C)) ⊆ T
Def⊆ (9)

⊢ (A∩(B∪C))
︸ ︷︷ ︸

T

= ((A∩B)∪(A∩C))
︸ ︷︷ ︸

S

Fig. 2. Assertion level proof for the statement A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

level proof generated by Ωmega for our running example is given in Fig. 2; this
proof is represented as a tree (or acyclic graph) in sequent-style notation and the
proof steps are ordered. Currently we only consider plain assertion level proofs,
and do not assume any prior hierarchical structure or choices between proof
alternatives (as is possible in Ωmega). Our algorithm performs an incremental
categorization of steps in the proof tree (where n = 0, . . . , k denotes the ordered
proof steps in the tree; initially n is 1):

while there exists a proof step n do

evaluate the granularity of the compound proof step n (i.e., the proof step consisting
of all assertion level inferences performed after the last step labeled “appropriate with
explanation” or “appropriate without explanation” — or the beginning of the proof,
if none exists yet) with the given rule set under the following two assumptions: (i) the
involved concepts are mentioned in the presentation of the step (an explanation),
and (ii) only the resulting formula is displayed.

1. if n is appropr. w. expl.
then label n as “appropr. w. expl.”; set n := n+1;

2. if n is too small w. expl., but appropr. wo. expl.
then label n as “appropr. wo. expl.”; set n := n+1;

3. if n is too small both w. and wo. explanation
then label n as “too small”; set n := n+1;

4. if n is too big then label n−1 as “appropr. wo. expl.” (i.e. consider the
previous step as appropr.), unless n−1 is labeled “appropr. w. expl.” or “ap-
propr. wo. expl.” already or n is the first step in the proof (in this special case
label n as “appropr. w. expl.” and set n := n+1).

We thereby obtain a proof tree with labeled steps (labeled nodes) which dif-
ferentiates between those steps that are categorized as appropriate for presen-



tation and those which are considered too fine-grained. Proof presentations are
generated by walking through the tree,10 skipping the steps labeled too small.11

3 Modeling the Granularity of our Example Proof

We exemplarily model the granularity of the textbook proof in Fig. 1. Starting
point is the initial assertion level proof from Fig. 2. This proof assumes the basic
definitions and concepts in naive set theory (such as equality, subset, union,
intersection and distributivity) and first-order logic. Notice that the Bartle &
Sherbert proof in Fig. 1 starts in 1 with the assumption that an element x is in
the set A∩ (B ∪C). The intention is to show the subset relation A∩ (B ∪C) ⊆
(A ∩ B) ∪ (A ∩ C), which is not explicitly revealed until step 7 , when this
part of the proof is already finished. The same style of delayed justification
for prior steps is employed towards the end of the proof, where statements 13
and 14 justify (or recapitulate) the preceding proof. For the comparison of
proof step granularity in this paper, however, we consider a re-ordered variant
of the steps in Fig. 1, which is displayed in Fig. 3 (a).12 We now employ suitable
granularity rule sets to automatically generate a proof presentation from our
Ωmega assertion level proof which exactly matches the twelve steps of the Bartle
& Sherbert proof, skipping intermediate proof steps according to our feature-
based granularity model. Fig. 4 shows two sample rule sets which both lead
to the automatically generated proof presentation in Fig. 3 (b). For instance,
the three assertion level steps (11), (12) and (13) in the initial assertion level
proof are combined into one single step from 9. to 10. in the proof presentation in
Fig. 3 (b), like in the textbook proof. The rule set in Fig. 4 (a) was generated by
hand, whereas the rule set in Fig. 4 (b) was automatically learned13 (cf. Sect. 4).
The rules are ordered by utility for conflict resolution. Note that rules 4–6 in
Fig. 4 (a) express the relation between the appropriateness of steps and whether
the employed concepts are mentioned verbally (feature verb), e.g. rule 6) enforces
that the definition of equality is explicitly mentioned (as in step 1. in Fig 3 (b)).
All other cases, which are not covered by the previous rules, are subject to a
default rule. Natural language is produced here via simple patterns and more

10 In case of several branches, a choice is possible which subtree to present first, a
question which we do not address in this paper.

11 Even though the intermediate steps which are too small are withheld, the presenta-
tion of the output step reflects the results of all intermittent assertion applications,
since we include the names of all involved concepts whenever a (compound) step is
appropriate with explanation.

12 Note that step (1) in the re-ordered proof corresponds to the statements 7 , 13
and 14 in the original proof which jointly apply the concept of set equality. The
ordering of proof presentations can be dealt with using dialog planning techniques,
as explored in [5].

13 The sample proof was used to fit a rule set to it via C5.0 machine learning [8]. All
steps in the sample proof were provided as training instances with label appropriate,
all tacit intermediate assertion level steps were labeled as too small, and always the
next bigger step to each step in the original proof was provided as a too big step.



1. In view of Definition 1.1.1, we [show] that
the sets A∩ (B∪C) and (A∩B)∪ (A∩C)
are equal. 14 [First we show] that A∩(B∪
C) is a subset of (A ∩ B) ∪ (A ∩ C). 7
[Later we show] (A∩B)∪(A∩C) is a subset
of A ∩ (B ∪ C). 13

2. Let x be an element of A ∩ (B ∪ C), 1
3. then x ∈ A and x ∈ B ∪ C. 2
4. This means that x ∈ A, and either x ∈ B

or x ∈ C. 3
5. Hence we either have (i) x ∈ A and x ∈ B,

or we have (ii) x ∈ A and x ∈ C. 4
6. Therefore, either x ∈ A∩B or x ∈ A∩C, 5
7. so x ∈ (A ∩ B) ∪ (A ∩ C). 6
8. Conversely, let y be an element of (A∩B)∪

(A ∩ C). 8
9. Then, either (iii) y∈A∩B, or (iv) y∈A∩C. 9

10. It follows that y ∈ A, and either y ∈ B or
y ∈ C. 10

11. Therefore, y ∈ A and y ∈ B ∪ C, 11
12. so that y ∈ A ∩ (B ∪ C). 12

(a)

1. We show that ((A ∩ B) ∪ (A ∩ C) ⊆
A∩(B∪C)) and (A∩(B∪C) ⊆ (A∩
B)∪(A∩C)) ...because of definition
of equality

2. We assume x ∈ A∩(B∪C) and show
x ∈ (A ∩ B) ∪ (A ∩ C)

3. Therefore, x ∈ A ∧ x ∈ B ∪ C

4. Therefore, x ∈ A ∧ (x ∈ B ∨ x ∈ C)
5. Therefore, x∈A∧x∈B∨ x∈A∧x∈C

6. Therefore, x ∈ A ∩ B ∨ x ∈ A ∩ C

7. We are done with the current part
of the proof (i.e., to show that x ∈
(A ∩ B) ∪ (A ∩ C)). [It remains to
be shown that (A∩B)∪ (A∩C) ⊆
A∩B∪C]

8. We assume y ∈ (A ∩ B) ∪ (A ∩ C)
and show y ∈ A ∩ (B ∪ C)

9. Therefore, y ∈ A ∩ B ∨ y ∈ A ∩ C

10. Therefore, y ∈ A ∧ (y ∈ B ∨ y ∈ C)
11. Therefore, y ∈ A ∧ y ∈ B ∪ C

12. This finishes the proof. Q.e.d.
(b)

Fig. 3. Comparison between (a) the (re-ordered) proof by Bartle and Sherbert [1] and
(b) the proof presentation generated with our rule set from the Ωmega proof in Fig. 2

exciting natural language generation is easily possible with Fiedler’s mechanisms
[5]. The rule sets in Fig. 4 can be successfully reused for other examples in the
domains as well (as demonstrated with a different proof exercise in [9]).

4 Learning from Empirical Data

We employ off-the-shelf machine learning tools to learn granularity rule sets
(classifiers) from annotated examples (supervised learning), i.e. proof steps with
the labels appropriate, too small or too big. Currently, our algorithm calls the
C5.0 data mining tools [8]. To assess the performance of learning classifiers from
human judgments, we have conducted a study where a mathematician (with
tutoring experience) judged the granularity of 135 proof steps. These steps
were presented to the mathematician via an Ωmega-assisted environment which
computed the feature values for granularity classification in the background. The
steps were (with some exceptions) generated at random step size, such that each
presented step corresponded to one, two, or three assertion level inference steps
(we also included a few single natural deduction (ND) steps for comparison14).

14 We found that, unlike the assertion-level steps, single natural deduction steps were
mostly rated as “too small” by the expert.



1) hypintro=1 ∧ total> 1 ⇒ too-big
2) ∪-Defn∈{1, 2}∧∩-Defn∈{1, 2} ⇒

too-big
3) ∩-Defn< 3 ∧ ∪-Defn=0 ∧

m.c.u.=1 ∧ unm.c.u.=0 ⇒ too-
small

4) total<2 ∧ verb=true
⇒ too-small

5) m.c.u.<3 ∧ unm.c.u.=0 ∧
verb=true ⇒ too-small

6) eq-Defn>0 ∧ verb=false ⇒ too-
big

7) ⇒ app.

(a)

1) conceptsunique∈{0, 1} ∧ eq-Defn=0 ∧
verb=true ⇒ too-small

2) hypintro=0 ∧ eq-Defn=0 ∧ ∪-Defn=0 ∧
verb=true ⇒ too-small

3) conceptsunique ∈{2, 3, 4} ∧
∪-Defn ∈{1, 2, 3} ⇒ too-big

4) hypintro ∈{1, 2, 3, 4} ∧
conceptsunique ∈{2, 3, 4} ⇒ too-big

5) unm.c.u.=0 ∧ total ∈{0, 1, 2} ∩-Defn ∈{1, 2}
∧ close=false ⇒ too-small

6) eq-Defn∈{1, 2} ∧ verb=false ⇒ too-big
7) eq-Defn∈{1, 2} ∧ verb=true ⇒ app.
8) eq-Defn=0 ∧ verb=false ⇒ app.
9) ⇒ app.

(b)

Fig. 4. Rule sets for our running example: (a) rule set generated by hand, (b) rule
set generated the using C5.0 data mining tool (ordered by the rules’ confidence values)

The presented proofs belonged to one exercise in naive set theory and three
different exercises about binary relations. We used the Weka suite15 to compare
the performance of the PART classifier [10] which is inspired by Quinlan’s C4.5
to the support vector machines implementation SMO [11], resulting in 86.9%
and 85.4% of correct classification and Cohen’s (unweighted) κ = 0.65 and κ =
0.61, respectively, in 10-fold cross validation, using only the 130 steps that were
generated from assertion-level inferences (excluding the single ND steps). The
results were achieved after we excluded some of the attributes (in particular those
that refer to the use of specific concepts, i.e., Def. of ∩, Def. of ◦, etc.), which
were relevant only in some of the exercises (possibly hampering generalizability
of the learned classifiers), otherwise we obtained slightly worse 85.4% of correct
classification and κ = 0.61 with PART.

5 Conclusion

Granularity has been a challenge in AI for decades [12, 13]. Here we have focused
on adaptive proof granularity, which we treat as a classification problem. We
model different levels of granularity using rule sets, which can be hand-authored
or learned from sample proofs. Our granularity classifiers are applied dynamically
to proof steps, taking into account changeable information such as the user’s
familiarity with the involved concepts. Using assertion level proofs as the basis
for our approach is advantageous for the generation of natural language output,
and the relevant information for the classification task (e.g., the concept names)
is easily read off the proofs. Future work consists in further empirical evaluations
of the learning approach — to address the questions: (i) what are the most useful
features for judging granularity, and are they different among distinct experts

15 http://www.cs.waikato.ac.nz/~ml/weka/



and domains, and (ii) what is the inter-rater reliability among different experts
and the corresponding classifiers generated by learning in our framework? The
resulting corpora of annotated proof steps and generated classifiers can then be
used to evaluate the appropriateness of the proof presentations generated by our
system.

Acknowledgments We thank four anonymous reviewers for their useful com-
ments, and Marc Wagner and Claus-Peter Wirth for internal review.

References

1. Bartle, R.G., Sherbert, D.: Introduction to Real Analysis. 2 edn. Wiley (1982)
2. Benzmüller, C., Horacek, H., Kruijff-Korbayová, I., Pinkal, M., Siekmann, J.H.,

Wolska, M.: Natural language dialog with a tutor system for mathematical proofs.
In Lu, R., Siekmann, J.H., Ullrich, C., eds.: Cognitive Systems. Volume 4429 of
LNCS., Springer (2005) 1–14

3. Benzmüller, C., Horacek, H., Lesourd, H., Kruijff-Korbajova, I., Schiller, M., Wol-
ska, M.: A corpus of tutorial dialogs on theorem proving; the influence of the
presentation of the study-material. In: Proc. Intl. Conference on Language Re-
sources and Evaluation (LREC 2006), Genoa, Italy, ELDA (2006)

4. Autexier, S., Benzmüller, C., Dietrich, D., Meier, A., Wirth, C.P.: A generic mod-
ular data structure for proof attempts alternating on ideas and granularity. [14]
126–142

5. Fiedler, A.: P.rex : An interactive proof explainer. In Goré, R., Leitsch, A., Nipkow,
T., eds.: Automated Reasoning — IJCAR 2001. Number 2083 in LNAI, Siena, Italy,
Springer Verlag (2001) 416–420

6. Denney, E., Power, J., Tourlas, K.: Hiproofs: A hierarchical notion of proof tree.
In: MFPS XXI. Volume 155 of LNCS., Elsevier (2006) 341 – 359

7. Autexier, S., Fiedler, A.: Textbook proofs meet formal logic - the problem of
underspecification and granularity. [14] 96–110

8. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
9. Schiller, M., Benzmüller, C.: Granularity-adaptive proof presentation. Technical

report, SEKI Working-Paper (2009) http://arxiv.org/pdf/0903.0314v4.
10. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization.

In: Proc. 15th Intl. Conf. on Machine Learning, Morgan Kaufmann (1998) 144–151
11. Platt, J.C.: Fast training of support vector machines using sequential minimal

optimization. In Schoelkopf, B., Burges, C., Smola, A., eds.: Advances in Kernel
Methods - Support Vector Learning. MIT Press (1998) 185–208

12. Hobbs, J.R.: Granularity. In: Proc. of the 9th Int. Joint Conf. on Artificial Intel-
ligence (IJCAI). (1985) 432–435

13. McCalla, G., Greer, J., Barrie, B., Pospisil, P.: Granularity hierarchies. Computers
& Mathematics with Applications 23(2-5) (1992) 363–375

14. Kohlhase, M., ed.: MKM’05. Volume 3863 of LNCS., Springer (2006)


