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Abstract

We present a recent application area of the proof assistant Ωmega,

the teaching of mathematical proofs within an environment for tutorial

dialog. We discuss the design of our dialog system prototype for proof

tutoring in the light of the requirements imposed by its potential users.

Empirical studies investigating those requirements guide the development

of the system.

1 Introduction

We present work in the Dialog [BFG+03] project, which addresses the question
how the automated teaching of mathematical proof techniques can be supported
with the help of a mathematical assistant system, Ωmega [SBA06]. The Dialog

project relies on the assumption that tutorial dialog is an effective means for
teaching, and develops a prototype of such a dialog system. We investigate
the needs imposed on such a system by their users with the help of empirical
experiments and the gradual development of the prototype. Our work relies on
the following assumptions:

1. Teaching mathematical proofs by textbooks or human tutors generally in-
volves the use of both natural language and formula language, we therefore
aim at a system capable of communication in this language;

2. The dialog system is designed to offer interactive proof exercises to their
users. Learners have high expectations w.r.t. the feedback of the system
to their proof attempts, which requires the system to thoroughly analyze
the user input;
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3. Mathematics, in particular theorem proving, allows a large number of valid
alternatives to the same problems, which calls for the dynamic evaluation
of a particular proof attempt;

4. Users have different learning histories and requirements, and therefore
require individual modeling.

This paper is organized as follows: In Section 2, we motivate and discuss
our standpoint. In Section 3, we present the two main aspects of our work; em-
pirical studies in the domain of tutorial dialog for mathematical proofs; and the
prototype dialog system developed in cooperation between the Dialog project
and the Ωmega group.

2 Assertion Application for Proof Tutoring

The dialog system outlined above relies on a mathematical domain-reasoning
component in the form of a mathematical assistant system. Research in theo-
rem proving has resulted in a number of various systems which guarantee the
correctness of proofs constructed with them. A number of such systems allow
efficient proof search, but this comes at the cost that the “machine-oriented”
proofs typically produced by these systems do not resemble proofs as they are
tought in classrooms.

This has motivated us to consider an alternative to “classical” theorem prov-
ing, namely assertion-level theorem proving. A proof on the assertion level (a
notion due to Huang [Hua94]) is a proof where each inference step represents
the application of a mathematical fact, such as a definition, lemma or a theo-
rem. Automated proof search at the assertion level is supported by the Ωmega

system.
Besides our aim to reach a close correspondence between mathematical prac-

tice and its formal counterpart, we want to enable the dialog system to commu-
nicate with the user in a natural way. We support the development of the system
with empirical experiments. These do not only highlight the requirements for
the system to be effective, they also show the influence of teaching style on the
learners. The following sections present these empirical studies in more detail,
and discuss the design of the Ωmega system and the Dialog prototype system.

3 Towards Tutorial Dialogue for Mathematical

Proofs

A central role of the envisioned dialog system is to allow a learner to do in-
teractive proof exercises with the system and receive feedback, help and hints.
Therefore, the system needs to meet a number of requirements, concerning us-
ability and its natural language interface, but also the quality of feedback. A
central role of the mathematical assistant system Ωmega within the tutoring
scenario is to analyze proof attempts from the students, in order to generate
accurate feedback. This task is referred to as “Proof Step Evaluation”, and a

2



prerequisite for effective tutoring. We have studied how human tutors perform
this analysis in two series of Wizard-of-Oz experiments, where human tutors
simulated the envisioned dialog system. This allowed us to collect large corpora
that document the interaction between the subjects of the experiment, who
acted as learners, and the simulated dialog system.

3.1 Empirical Studies

Two series of Wizard-of-Oz experiments ([WVT+04],[BHL+06a]) have been car-
ried out in the Dialog project. Both series served to collect corpora of tutorial
dialogs, and to point out requirements to the system. In order to obtain a valid
sample of mathematical teaching practice, the human experts acting as “wiz-
ards” all had teaching experience in mathematics, and the subjects in the role
of the learner were university students with a basic university-level mathematics
background.

During the experiment sessions, the students were asked to solve proof ex-
ercises in collaboration with the dialog system (without being informed of the
wizard in a separate room). They were given preparatory material illustrating
the mathematical domain, and in the first series of experiments, they had to
complete a pre-test on paper. The dialogs between the wizard and the student
was mediated by a software interface [BHL+06b], which included user interfaces
for the wizard and the student, and recorded the tutorial dialogs in a logfile.
The user interfaces allowed mixed formula and text input. In the second series
of experiments, the interface was capable of different ways to input symbols, by
means of selection from menu buttons, by using latex commands, and by using
a German language version of latex commands.

Besides the dialogs as such, we collected additional data on the usage of
the system, including video and audio recordings. Each student also had to fill
out two questionnaires, one in the beginning of the experiments - asking the
student about general background and previous experiences with mathematics
- and one at the end, which referred to the usability of the system, but also
included open-ended questions.

3.2 First Observations and Results

We have obtained a very diverse corpus of dialogs, including different patterns
of using natural language, and different mathematical approaches, but which
also reflect different levels of mathematical ability. In the second series of ex-
periments, two different kinds of introductory material were handed out to two
groups of approximately half of the students, which allowed us to verify if these
materials had any influence on the dialogs. Indeed, it appears that the style of
the introductory material had an influence on the natural language verbosity of
the students (cf. [BHL+06a]). Another study [Sch05] shows a possible influence
of the study material on the mathematical style of the students. Valid solutions
to the proof exercises included proofs which were based on a pure “rewriting”
style to proving, whereas others employed the extensionality principle and case
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st[0]: (R ◦ S)−1 =
{(y, x)|(x, y) ∈ (R ◦ S)}

tu[0]: This statement is correct.
st[1]: (R ◦ S)−1 = {(y, x)|∃z(z ∈

M ∧ (x, z) ∈ R ∧ (z, y) ∈ S}
tu[1]: This formula is also correct.
st[2]: (R ◦ S)−1 = {(y, x)|∃z(z ∈

M ∧ (z, x) ∈ R−1 ∧ (y, z) ∈
S−1}

tu[2]: This is correct. You are on a
good way.

st[0]: One needs to show equality
between two sets.

tu[0]: That’s right! How do you
proceed?

st[1]: I use the extensionality prin-
ciple.

tu[1]: That’s right.
st[2]: Let (s, r) ∈ (R ◦ S)−1. Ac-

cording to the definition of
the inverse relation it then
holds that (r, s) ∈ (R ◦ S).

tu[2]: That’s right!

Figure 1: Two dialog fragments from the corpus for the proof exercise: (R ◦
S)−1 = S−1 ◦ R−1, exhibiting a rewriting style (left) and the extensionality
principle (right).

splits. An example of two dialog fragments (containing three interactions each)
in these two different styles is represented in Figure 1. The choice of one of
these two styles bears some correlation to the instruction materials given to the
students.

Not only the introductory material, also the user interface exerted an influ-
ence on the dialogs. In the second series of experiments, students were shown
how to use the copy & paste facilities of the interface, which lead to some striking
examples of redundancy and inflated formulae during the dialogs.

The experiments illustrate the influence that the tools for learning have on
their user group. Therefore, also the effect of computer systems for education
on the learners needs to be carefully evaluated empirically. The experiments
also show great varieties w.r.t. different users and their abilities, which calls for
user modeling and the dynamic evaluation of user input.

3.3 System Design

Considering the various tasks of the envisioned dialog system mentioned above,
we partition these into five modules.

Language analysis, accepting a mixture of both natural language and formula
language from the user. The series of empirical experiments have allowed
the study of particular idiosyncracies of mathematical texts, and a number
of linguistic phenomena have been identified (see [HW06]).

Domain reasoning, based on Ωmega, to analyze proof steps proposed by the
students, and capable of generating possible continuations for a proof, in
case the student requires a hint.

Didactic knowledge, to determine what teaching strategy to follow (e.g. whether
to follow a didactic or a socratic approach to teaching).
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Feedback realization, which outputs a textual representation of the appropriate
feedback generated with the help of the above components.

Dialog management, to orchestrate the above processes within the dialog sys-
tem architecture.

These modules are arranged in a star-shaped architecture, where each mod-
ule communicates directly with the dialog manager (see [BB06]). In contrast to
a pipeline architecture, this allows the interleaving of the processes in different
modules. This way, we enable a successively refined language analysis based
on results from the domain reasoning component, or an interaction between di-
dactic and domain reasoning components. The domain reasoning module has a
pivotal role in the architecture, since it provides necessary input for the didactic
module and feedback generation.

3.4 Domain Reasoning

The proof step evaluation performed by the module determines three criteria,
whether a proof step is correct, whether the step size of the individual proof
steps is appropriate (a.k.a. “granularity”), and whether a proof step is relevant.
Evaluating these three criteria is motivated by the empirical experiments, which
showed that correctness is not the only criterion that determines the feedback of
the tutors. Consider the following sample from the dialogs of the second series
of experiments.

st[1] (x, y) ∈ (R ◦ S)−1

tu[1] Now try to draw inferences from that!
st[2] (x, y) ∈ S−1 ◦ R−1

tu[2] One cannot directly deduce that. You need some intermediate steps!

As the basis for proof step evaluation, each proof step proposed by the user is
reconstructed in Ωmega. Since even the most ordinary human proof steps can
generally include a number of tacit intermediate steps, which become apparent
when modeling these proof steps in a rigorous formal system, the reconstruc-
tion requires proof search. The details of proof reconstruction in Ωmega are
described in [DB07]. It delivers a proof object at the assertion level, i.e., a
proof where each step is justified by a mathematical fact such as a definition,
a lemma or a theorem, which is a formal (and verified) model of the originally
uttered proof step. In case a proof cannot be found for a given utterance within
reasonable resource bounds, the proof step is considered incorrect.

3.5 Adapting Proof Step Analysis to Empirical Norms –

The Case of Granularity

The Ωmega proof reconstructions at the assertion level also allow us to mea-
sure the step size of proof steps. It can be argued that they provide a better
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approximation to human step size than many other calculi which are popular
in theorem proving (even those calculi that were invented with mathematical
practice in mind, such as Gentzen’s Natural Deduction calculus [Gen34]). Con-
sider, for example, two proof fragments (one using Ωmega assertion application,
and one in Natural Deduction) which both reconstructs the same example of an
uttered proof step from the experiments (namely, that (y, z) ∈ r ∧ (x, z) ∈ s−1

follows from (z, y) ∈ r−1 ∧ (x, z) ∈ s−1, where r−1 denotes the inverse of the
relation r).

(z, y) ∈ r−1
∧ (x, z) ∈ s−1

(y, z) ∈ r ∧ (x, z) ∈ s−1
Def−1

Assertion Application

A := (z, y) ∈ r−1
∧ (x, z) ∈ s−1

(y, z) ∈ r−1
∧E

(y, z) ∈ r
Def.−1

A

(x, z) ∈ s−1
∧E

(y, z) ∈ r ∧ (x, z) ∈ s−1
∧I

Natural Deduction

However, the experiments suggest that step size is not an absolute quantity,
but depends on the context of a tutorial dialog – for an advanced student,
an appropriate step size can be much larger than for a beginner. In order to
account for this, we include a student model into the system architecture. It
records whenever a particular mathematical fact (associated to concepts, like
particular definitions or theorems) has been applied successfully, and allows
the analysis to distinguish between concepts the student is acquainted to, and
concepts the student is not expected to know. This way, granularity analysis can
be parameterized depending on the knowledge of the student, which dynamically
changes during the session.

The experiments also provide evidence that different tutors had different
opinions of what constitutes an appropriate step size. However, the dialogs
presented to them were not directly controlled by the setup of the experiments,
we can only give a phenomenological account of these differences. Nevertheless,
this highlights the requirement for the granularity analysis to allow different
viewpoints on granularity. These naturally arise from a number of different
criteria of a proof step that might play a role for judging step size, such as

• Does a proof step involve one or even more concepts that are considered
unknown to the student?

• Does a proof step introduce hypotheses or a case split?
• Are concepts required in a proof step mentioned verbaly?
• Do the applied facts have the status of definitions, theorems or lemmata?
• The total number of different concepts required for making a particular

step.
This is certainly not exhaustive, but it illustrates that a teacher has much

freedom in chosing to what degree each of these criteria influences his judgment
w.r.t. step size.
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3.6 Discussion and Outlook

This paper has presented arguments why in the field of computer-aided mathe-
matics tutoring, a strong coupling of system development and empirical studies
is beneficial. We have illustrated this process w.r.t. the Dialog project, where
the development is gradually geared to the needs of potential users. This has
revealed a number of parameters that have to be taken into account, including
the particularities of mathematical language, use of the interface, a variety of
approaches to proving (and in particular, a gap between human modes of prov-
ing compared to computer systems), and individual differences among users,
but also among tutors, some of which were outlined in Section 3.2. This has
stimulated the current conception of the Dialog system, and further motivated
the choice of Ωmega as a domain reasoner.

Future plans include the deployment of a subset of the developed mod-
ules and techniques from the prototype in the e-learning platform Activemath
[MMU+07], as well as further case studies with the emerging prototype system,
which is currently still under development.

References

[BB06] Mark Buckley and Christoph Benzmüller. An Agent-based Ar-
chitecture for Dialogue Systems. In Irina Virbitskaite and Andrei
Voronkov, editors, Proceedings of Perspectives of System Informat-
ics, volume 4378 of Lecture Notes in Computer Science, pages 135–
147, Novosibirsk, Russia, 2006. Springer.

[BFG+03] Christoph Benzmüller, Armin Fiedler, Malte Gabsdil, Helmut Ho-
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